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A quantum system is described, whose wave function has a complexity that increases exponentially with
time. Namely, for any fixed orthonormal basis, the number of components required for an accurate represen-
tation of the wave function increases exponentially.@S1063-651X~96!01905-8#

PACS number~s!: 05.45.1b

This article describes a quantum system whose represen-
tation becomes increasingly complex with the passage of
time. This behavior, which is well known as a generic prop-
erty of classicalHamiltonian systems, is commonly called
‘‘chaos.’’ For example, an initially smooth Liouville density
becomes more and more convoluted as time passes and it
may form intricate shapes with exceedingly thin and long
protuberances. However, quantum wave functions usually
have a milder behavior@1#. In particular, quantum systems
with discrete spectra can be represented, with arbitrary accu-
racy, by afinitenumber of eigenfunctions that are periodic in
time. Their wave function thus is almost periodic. Itscom-
putational complexity@2, 3# does not increase as time passes.
~Some authors use other criteria for complexity, such as the
visual appearance of wave functions, but these seem rather
subjective.!

There is nonetheless a simple way of generating a quan-
tum chaos that closely parallelsany type of classical chaos
@4#. Consider an autonomous dynamical system obeying the
equations of motion

dxk/dt5Vk~x1, . . . ,xN!, k51, . . . ,N. ~1!

If N>3, such a system may be chaotic. Irrespective of its
physical nature, it is always formally possible to introduce a
Hamiltonian

H5(
k
Vk~x1, . . . ,xN!pk , ~2!

where thepk are new variables, defined to be canonically
conjugate to thexk. This Hamiltonian obviously gives Eq.
~1! as the law of motion.~Note that the Lagrangian
L[(pkẋ

k2H is numerically equal to zero. This is a highly
constrained canonical system.!

Quantization may then proceed as usual by the introduc-
tion of a wave functionc(x1, . . . ,xN) and the substitution
pk→2 i\]/]xk. We then still have Eq.~1! as the Heisenberg
equation of motion for the operatorsxk and since the latter
commute~and therefore can be simultaneously diagonalized!
any chaos in the solution of the classical equations~1! will
be reflected as chaos in the time evolution of the expectation
values^xk(t)&. We thus see that there is no formal incom-
patibility between quantum theory and chaos. A simple ex-

ample, the configurational cat map@5#, was analyzed by
Weigert. This quantization technique was also discussed by
Berry @6#.

In this article I present a detailed description of a quantum
system whose wave function becomes increasingly complex
with time, just as a Liouville density would do in classical
mechanics. The long-range evolution of the wave function is
effectively unpredictable with finite computing resources.
This is a genuine example of quantum chaos. I have no pre-
tense that the abstract model discussed here represents, even
approximately, a real physical object. However, it gives a
quantitative illustration to the fact that, contrary to some
claims, quantum mechanics is compatible with the existence
of chaos.

Such a chaotic quantum system can be constructed for
any classical area-preserving map. As a concrete example I
shall choose a map consisting of alternating twists and turns
of a unit sphere. That map has a quantum version, called
‘‘kicked top’’ @7#, with a discrete, finite-dimensional
quasienergy spectrum. Therefore, unlike the classical map,
the quantum kicked top is not truly chaotic. However, a clas-
sical dynamical system may have several, different quantum
versions. Another quantization of the same twist and turn
~TT! map is presented here, which is just as chaotic as the
original classical map.

The latter is defined as follows. Consider the unit sphere
x21y21z251. Each step of the TT map consists of a twist
by an anglea around thez axis ~namely, everyxy plane
turns by an angleaz), followed by a 90° rigid rotation
around they axis. The result is

x85z,

y85xsin~az!1ycos~az!, ~3!

z852xcos~az!1ysin~az!.

This map is obviously area preserving. For low values of
a, most classical orbits are regular~that is, they are quasi-
periodic!. As a increases, so does the fraction of chaotic
orbits, until fora53 most of the sphere is visited by a single
chaotic orbit~all numerical calculations below refer to the
casea53).

The kicked top@7# is a mechanical system~classical or
quantal! that mimics the above geometrical map. In the clas-
sical case, the top has a three-dimensional generalized phase*Electronic address: peres@photon.technion.ac.il
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space@8#, with canonical variablesJx , Jy , andJz satisfying
Poisson brackets$Jx ,Jy%5Jz and cyclic permutations. The
mapping

Jx85Jz ,

Jy85Jxsin~aJz /J!1Jycos~aJz /J!, ~4!

Jz852Jxcos~aJz /J!1Jysin~aJz /J!

is a canonical transformation@9# that leavesJ2 invariant. The
classical values ofJx /J, Jy /J, andJz /J lie on a unit sphere
and therefore they transform just asx, y, andz in Eq. ~3!.

A natural way of quantizing these equations is to replace
the classical variablesJk by the corresponding quantum op-
erators. Equation~4! then becomes a quantum map, gener-
ated by theunitary transformation

U5exp~2 ipJy/2\!exp~2 iaJz
2/2J\!. ~5!

For any eigenstate ofJ, this U is a matrix of order
(2 j11), with a discrete spectrum. The evolution is multiply
periodic and there is no chaos analogous to that of the clas-
sical map: computing the wave function for long times is not
more difficult than for short times.~There still is hypersen-
sitivity to small perturbations@10#, but this is not ‘‘chaos’’ in
the classical sense.!

We can also consider quantum systems that are not re-
stricted to a particular value ofj . Their Hilbert space is
spanned by the spherical harmonicsYj

m(u,f), with angles
u andf related to the Cartesian coordinates in Eq.~3! in the
usual way:x5sinu cosf, etc. The unitary evolution is still
generated by Eq.~5!, where it is now understood that the
various Jk have to be written as block-diagonal matrices,
with blocks of order 2j11. In that case, it is also possible to
write the wave function as

c~u,f!5(
j ,m

CjmYj
m~u,f!, ~6!

but its components with differentj are never mixed by the
U matrix. They evolve independently of each other. There
still is no chaos: the asymptotic cost of computing the final
state does not increase with the number of steps. We thus see
that the quantum kicked top is not a faithful replica of the
classical TT map. The reason for this failure of the corre-
spondence principle is explained below and an alternative
quantization method will be proposed.

Consider the Hamiltonian that generates the unitary map
~5!:

H5aJz
2/2J1~pJy/2!(

n
d~ t2n!, ~7!

where the unit of time is the duration of one step. In this
Hamiltonian, the twist is continuous and the rotation pro-
ceeds by kicks~the opposite choice is also possible!. If c is
represented by a set ofCjm coefficients as in Eq.~6!, the
Jk in ~7! are block diagonal, as explained above. On the other
hand, we may as well use the ‘‘coordinate basis’’ and di-
rectly write c(u,f) without expanding into spherical har-
monics, which is closer to the spirit of the classical TT map.

We then haveJz52 i\]/]f, and more complicated differ-
ential operators forJx andJy @11#. In particular,

J52 i\F 1

sinu

]

]u S sinu ]

]u D1
1

sin2u

]2

]f2G1/2. ~8!

When we were in a finite-dimensional Hilbert space, it
was natural~indeed unavoidable! to write the twist generator
as Jz

2/2J. However, for arbitraryc(u,f), a more natural
expression for the twist generator isJz cosu. Let us therefore
replace~7! by

H5aJz cosu1~pJy/2!(
n

d~ t2n!. ~9!

This is a Hermitian operator that does not commute with
J2, so thatJ2 is not conserved.~In other words,Jz cosu has
nonvanishing matrix elements betweenYj

m with different j
and cannot be written solely in terms of theJk matrices.!
Instead of~5! we now have

U5exp~2 ipJy/2\!exp~2 iaJz cosu/\!. ~10!

The crucial difference is that the spectra of the newH and
U include continuousparts and therefore permit the exist-
ence of true chaos. This can be shown as follows. Returning
to the classical TT map~3!, let us consider, instead of indi-
vidual points, a mass densityr(u,f) spread on the unit
sphere. We may even considercomplexdensities, if we wish.
Let us further assume that the infinitesimal mass
r(u,f)dV, attached to the area elementdV5sinududf, is
conserved by the TT map. It thus behaves as an incompress-
ible fluid, or as a Liouville density would do while moving in
phase space.

As the map is area preserving, namely,dV85dV, we
have, at each step,

r8~u,8f8!5r~u,f!. ~11!

This implies that the map isunitary: for any two densities
r1 andr2 ,

E r18~u8,f8!* r28~u8,f8!dV85E r1~u,f!* r2~u,f!dV.

~12!

Such a unitarity property was proved long ago by Koopman
@12# for Liouville densities in phase space. Koopman’s theo-
rem applies only to the subset of Liouville densities that are
square integrable. There also are, in classical mechanics, le-
gitimate Liouville densities that are not square integrable.
For these, Eq.~12! has no meaning; it is impossible to use
Hilbert space methods that mimic quantum mechanics, and
very little is known.

On the other hand, there is a large body of knowledge on
the ergodicity and mixing properties of square-integrable
Liouville functions @13#. In the generic nonintegrable case,
the Liouvillian has acontinuousspectrum, in which an infi-
nite number of discrete lines may be embedded. If the dy-
namical system has a finite measure, the unitary operatorU
has at least one eigenvalue equal to 1, corresponding to equi-
librium. Moreover, it can be proved@13# that, if the system is
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ergodic but not mixing, that eigenvalue is nondegenerate and
all the other eigenvalues ofU form a subgroup of the circle
group. On the other hand, for a mixing system, which also
has a single nondegenerate eigenvalue 1, the rest of the spec-
trum is absolutely continuous. A generic dynamical system
may have some regions of phase space that are subject to
mixing, others that are only ergodic, and still others that are
not even ergodic. Such a system is called ‘‘decomposable’’
@14#. In that case, the spectrum ofU is continuous, with an
infinite number of discrete lines embedded in it. In particular,
the eigenvalue 1 and possibly others are degenerate.

Now, it is easily seen that the quantum wave function
c(u,f) behaves, under the unitary transformationU in Eq.
~10!, exactly as the fictitious incompressible mass density
described above. This is obvious for the rotation operator
exp(2ipJy/2\), which performs a rigid rotation ofc around
the y axis. For the twist exp(2iaJzcosu/\) we have

c~u,f!→c8~u,f!5c~u,f2acosu!. ~13!

That is, the wave functionc moves on the surface of the unit
sphere exactly as the classical points did and it remains nor-
malized by virtue of the unitarity of the mapping. The essen-
tial difference between this new quantum system and the
former kicked top is that the new Hamiltonian~which for-
mally behaves as a classical Liouville operator! has a partly
continuous spectrum. Therefore the evolution ofc(u,f)
cannot be represented, even approximately, by a finite num-
ber of terms.

Let us examine this evolution more closely. The rotational
part of U is represented, in theYj

m basis, by the familiar
orthogonal matrixUmm8

( j ) , namely, a block-diagonal matrix
with blocks of size (2j11) @15, 16#. In the same basis, the
twist ~13! is also represented by a unitary transformation@17#

Cjm→Cjm8 5(
l
U jl

~m!Clm , ~14!

where

Ujl
~m!5E Yj

m* ~u,f!Yl
m~u,f!e2 imacosudV ~15!

is a band matrix. This transformation leavesm invariant, but
introduces all thej with j.umu ~with exponentially small
coefficients for largej ).

It is now possible to give a quantitative measure for the
complexity of the wave function. Its information entropy
@18#

S52(
j ,m

uCjmu2lnuCjmu2 ~16!

has the intuitive meaning thateS roughly indicates the num-
ber of basis vectors that are appreciably involved in the ex-
pansion ofc into spherical harmonics. This ‘‘entropy’’ of
course depends of the choice of the basis~namely, spherical
harmonics!. However, it can be shown@17# that whenS be-
comes large, its value is asymptotically independent of the
choice of the basis, provided that the transformation between

different bases is given by a band matrix~the latter property
holds for any two bases whose definition is not algorithmi-
cally complex@19#!.

Let us illustrate the above considerations by a numerical
example. A plot ofS versus the number of steps is shown in
Fig. 1 for a53, and for two initial statesc6 with

C1156C1,2151/A2, ~17!

respectively, and all otherClm50. It is seen thatS increases
roughly linearly, so that, as the wave function evolves and
becomes more and more complicated, the effective number
of components needed for representing it increases about ex-
ponentially with time. The small negative second derivative
seen in the graphs of Fig. 1 is due to the presence of small
regular~nonchaotic! domains in phase space@7, 10#, whose
contributions to the growth ofS is logarithmic rather than
linear. ~The calculation of the last step in Fig. 1 involved all
the matrices withj ,l ,m up to 500. The next step would have
exceeded the capacity of my workstation or entailed a severe
loss of accuracy.!

Finally, it should be pointed out that the properties of the
above model are generic. Any classical, bounded system for
which a Liouville equation can be written can be quantized
in this way ~this is not, of course, the standard canonical
quantization, since phase space is treated as if it were a con-
figuration space and the number of dimensions is doubled!.
If the classical system is chaotic, so is the corresponding
quantum system.

Some of the ideas presented here originated during a visit
to the International Center of Theoretical Physics, Trieste,
whose hospitality is gratefully acknowledged. I had interest-
ing discussions with Felix Izrailev and Dima Shepelyansky.
This work was supported by the Gerard Swope Fund and the
Fund for Encouragement of Research.

FIG. 1. Growth ofS for the two initial states in Eq.~17!.
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